МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ΓΟCT 31610.26-2012 (**IEC 60079-26:2006**)

ВЗРЫВООПАСНЫЕ СРЕДЫ Часть 26 Оборудование с уровнем взрывозащиты оборудования Ga

Explosive atmospheres.
Part 26.
Equipment with equipment protection level (EPL) Ga

MKC 29.260.20

Дата введения 2013-02-15

Предисловие

Цели, основные принципы и порядок проведения работ по межгосударственной стандартизации установлены ГОСТ 1.0-92 "Межгосударственная система стандартизации. Основные положения" и ГОСТ 1.2-2009 "Межгосударственная система стандартизации. Стандарты межгосударственные, правила и рекомендации по межгосударственной стандартизации. Правила разработки, принятия, применения, обновления и отмены"

Сведения о стандарте

- 1 ПОДГОТОВЛЕН Автономной некоммерческой национальной организацией "Ex-стандарт" (АННО "Ex-стандарт")
 - 2 ВНЕСЕН Федеральным агентством по техническому регулированию и метрологии
- 3 ПРИНЯТ Межгосударственным советом по стандартизации, метрологии и сертификации (протокол N 41 от 24 мая 2012 г.)

За принятие проголосовали:

Краткое наименование страны по МК (ИСО 3166) 004-97	Код страны по МК (ИСО 3166) 004-97	Сокращенное наименование национального органа по стандартизации
Азербайджан	AZ	Азстандарт
Армения	AM	Минэкономики Республики Армения
Беларусь	BY	Госстандарт Республики Беларусь
Казахстан	KZ	Госстандарт Республики Казахстан
Кыргызстан	KG	Кыргызстандарт
Молдова	MD	Молдова-Стандарт
Российская Федерация	RU	Росстандарт
Узбекистан	UZ	Узстандарт

- 4 Приказом Федерального агентства по техническому регулированию и метрологии от 29 ноября 2012 г. N 1365-ст межгосударственный стандарт ГОСТ 31610.26-2012/IEC 60079-26:2006 введен в действие в качестве национального стандарта Российской Федерации с 15 февраля 2013 г.
- 5 Настоящий стандарт идентичен второму изданию международного стандарта IEC 60079-26:2006* Explosive atmospheres Part 26: Equipment with equipment protection level (EPL) Ga (Взрывоопасные среды. Часть 26. Оборудование с уровнем взрывозащиты оборудования Ga).

Степень соответствия - идентичная (ITD).

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам приведены в дополнительном приложении ДА.

^{*} Доступ к международным и зарубежным документам, упомянутым здесь и далее по тексту, можно получить перейдя по ссылке на сайт http://shop.cntd.ru. - Примечание изготовителя базы данных.

Стандарт подготовлен на основе применения ГОСТ Р 52350.26-2007 (МЭК 60079-26:2006)

6 ВВЕДЕН ВПЕРВЫЕ

Информация о введении в действие (прекращении действия) настоящего стандарта публикуется в ежемесячно издаваемом информационном указателе "Национальные стандарты".

Информация об изменениях к настоящему стандарту публикуется в ежегодно издаваемом информационном указателе "Национальные стандарты", а текст изменений и поправок - в ежемесячно издаваемом информационном указателе "Национальные стандарты". В случае пересмотра или отмены настоящего стандарта соответствующая информация будет опубликована в ежемесячно издаваемом информационном указателе "Национальные стандарты"

Введение

Настоящий стандарт содержит полный аутентичный текст второго издания международного стандарта IEC 60079-26:2006 "Взрывоопасные среды. Часть 26. Оборудование с уровнем взрывозащиты оборудования Ga", включенного в международную систему сертификации МЭКЕх и европейскую систему сертификации на основе директивы 94/9 EC; его требования полностью соответствуют потребностям экономики стран СНГ.

Настоящий стандарт является частью серии стандартов на виды взрывозащиты для электрооборудования, применяемого во взрывоопасных средах.

Стандарт предназначен для нормативного обеспечения обязательной сертификации и испытаний.

Установленные настоящим стандартом требования дополняют требования IEC 60079-0:2004 "Электрооборудование для взрывоопасных газовых сред. Часть 0. Общие требования" по обеспечению безопасности применения электрооборудования на опасных производственных объектах газовой, нефтяной, нефтеперерабатывающей и других отраслях промышленности.

До настоящего времени специальный стандарт, регламентирующий требования к оборудованию с уровнем взрывозащиты оборудования Ga отсутствовал, и требования данного стандарта дополняют требования IEC 60079-0:2004.

1 Область применения

Настоящий стандарт устанавливает требования к конструкции, испытанию и маркировке электрооборудования, обеспечивающего уровень взрывозащиты оборудования Ga. В указанных изготовителем параметрах эксплуатации данное электрооборудование обеспечивает очень высокий уровень взрывозащиты, включая взрывозащиту при редких неисправностях оборудования или двух неисправностях, возникающих независимо друг от друга.

Примечание 1 - Неисправность может быть вызвана поломкой компонентов электрооборудования или ожидаемым внешним воздействием. Две независимых неисправности, которые могут возникать более часто и которые отдельно друг от друга не создадут опасности взрыва, а вместе могут создать потенциальную опасность взрыва, должны рассматриваться как возникающие вместе и вызывающие редкие отказы.

Примечание 2 - Настоящее электрооборудование предназначено для применения во взрывоопасных средах зоны класса 0, в которых взрывоопасная газовая среда, образуемая смесью газов, паров или туманов с воздухом в нормальных атмосферных условиях, присутствует постоянно, часто или длительный период времени.

Настоящий стандарт распространяется также на оборудование, установленное на границе применения разных уровней взрывозащиты.

Пример: На стенке резервуара для хранения, внутри которого находится зона класса 0, а снаружи зона класса 1.

Настоящий стандарт распространяется на оборудование, которое установлено в среде, требующей более низкого уровня взрывозащиты, но электрически соединено с оборудованием с уровнем взрывозащиты оборудования Ga (связанное оборудование).

Настоящий стандарт дополняет общие требования стандарта IEC 60079-0 и требования других стандартов серии IEC 60079 к видам взрывозащиты, чтобы обеспечить возможность применения установленного уровня взрывозащиты, для обеспечения уровня взрывозащиты оборудования Ga.

Примечание 3 - Настоящий стандарт может использоваться в качестве руководства при создании оборудования, предназначенного для использования во взрывоопасных газовых средах при условиях, отличных от атмосферных условий, указанных в IEC 60079-0. Однако рекомендуется проведение дополнительных испытаний, особенно для конкретных условий использования. Это особенно необходимо, если применяются виды взрывозащиты "Взрывонепроницаемая оболочка" (IEC 60079-1) или "Искробезопасная электрическая цепь" (IEC 60079-11).

Примечание 4 - Классификация опасных сред в зонах приведена в IEC 60079-10.

Примечание 5 - В настоящем стандарте не рассматриваются неэлектрические источники воспламенения, например ультразвуковые, оптические или радиационные излучения (см. EN 1127-1 [18]).

Примечание 6 - Данный подход обеспечивает уровень взрывозащиты оборудования Ga. Более подробная информация приведена в приложении A.

2 Нормативные ссылки

Следующие ссылочные документы* обязательны при использовании настоящего стандарта. Для датированных ссылок применяется только указанное издание. Для недатированных ссылок применяется последнее издание указанного документа (со всеми поправками).

IEC 60079-0:2004 Electrical apparatus for explosive gas atmospheres - Part 0: General requirements (Электрооборудование для взрывоопасных газовых сред. Часть 0. Общие требования)

IEC 60079-1 Electrical apparatus for explosive gas atmospheres - Part 1: Flameproof enclosures "d" (Электрооборудование для взрывоопасных газовых сред. Часть 1. Взрывонепроницаемые оболочки "d")

IEC 60079-10 Electrical apparatus for explosive gas atmospheres - Part 10: Classification of hazardous areas (Электрооборудование для взрывоопасных газовых сред. Часть 10. Классификация опасных сред)

IEC 60079-11:2006 Electrical apparatus for explosive gas atmospheres - Part 11: Intrinsic safety "i" (Электрооборудование для взрывоопасных газовых сред. Часть 11. Искробезопасная цепь "i")

IEC 60079-18 Electrical apparatus for explosive gas atmospheres - Part 18: Construction, test and marking of type of protection encapsulation "m" electrical apparatus (Электрооборудование для взрывоопасных газовых сред. Часть 18. Конструкция, испытания и маркировка электрооборудования с защитой вида "герметизация компаундом "m")

^{*} Таблицу соответствия национальных стандартов международным см. по ссылке. - Примечание изготовителя базы данных.

IEC 60695-11-10 Fire hazard testing - Part 11-10: Test flames - 50 W horizontal and vertical flame test methods (Испытания на пожароопасность. Часть 11-10. Пламя для испытания. Методы испытания горизонтальным и вертикальным пламенем мощностью 50 Вт)

3 Определения

В настоящем стандарте применены термины и определения в соответствии с IEC 60079-0, а также следующий термин с соответствующим определением:

Примечание - Дополнительные определения, применяемые к взрывоопасным средам, приведены в IEC 60050-426 [1].

3.1 уровень взрывозащиты оборудования: Определение уровня взрывозащиты оборудования приведено в Приложении А.

4 Требования к конструкции

4.1 Обшие положения

Оборудование должно соответствовать требованиям 4.2 по защите от опасности воспламенения от электрических цепей и требованиям 4.3-4.6 по защите от опасности воспламенения от механических или электростатических источников.

4.2 Средства защиты от опасности воспламенения от электрических цепей

4.2.1 Общие положения

Оборудование должно соответствовать требованиям одного из следующих пунктов:

- а) 4.2.2 или 4.2.3 в случае возникновения на оборудовании при использовании одного вида взрывозащиты двух независимых друг от друга неисправностей;
- b) 4.2.4 или 4.2.5 в случае повреждения одного вида взрывозащиты оборудования при наличии другого, не связанного с ним, вида взрывозащиты.

Электрические соединения и постоянно присоединенные кабели оборудования, расположенного во взрывоопасной среде, требующей применения оборудования с уровнем взрывозащиты оборудования Ga, должны соответствовать уровню взрывозащиты, предусмотренному настоящим стандартом (например, кабель со взрывозащитой вида "е" с искробезопасными цепями, не соответствующими уровню "ia", должен быть дополнительно заключен в трубу со взрывонепроницаемыми соединениями, или кабель со взрывозащитой вида "е" должен быть защищен от замыкания на землю).

Примечание 1 - Требования к кабелям и установке искроопасных цепей с уровнем взрывозащиты оборудования Ga приведены в IEC 60079-14 [6].

Примечание 2 - Из-за опасности воспламенения, возникающей в результате неисправности и (или) переходного циркулирующего тока в потенциально стабилизирующей системе, предпочтительно применять гальваническое разделение энергетических и сигнальных цепей оборудования в соответствии с 4.2.2, 4.2.3 и 4.2.4. При этом необходимо снизить воздействие тока короткого замыкания в потенциально стабилизирующей сети путем использования защитного оборудования, такого как устройство защиты от утечки на землю высокой чувствительности.

4.2.2 Искробезопасность как вид взрывозащиты, обеспечивающий уровень Ga

Искробезопасное электрооборудование, обеспечивающее уровень взрывозащиты оборудования Ga, и искробезопасные электрические цепи связанного оборудования, находящиеся во взрывоопасной среде, требующей использования оборудования с уровнем взрывозащиты оборудования Ga, должны соответствовать требованиям IEC 60079-11 для искробезопасных цепей уровня "ia".

Примечание - Искробезопасная цепь уровня "ib" в соответствии с IEC 60079-11 может рассматриваться как один из двух независимых видов взрывозащиты согласно пункту 4.2.4.

4.2.3 Герметизация как отдельный вид взрывозащиты

Электрооборудование, с взрывозащитой вида "герметизация компаундом", обеспечивающее уровень взрывозащиты оборудования Ga, должно соответствовать требованиям IEC 60079-18 [8] для "герметизации компаундом "ma".

Примечание - Герметизация компаундом "mb" в соответствии с IEC 60079-18 [8] может рассматриваться как один из двух независимых видов взрывозащиты согласно пункту 4.2.4.

4.2.4 Применение двух независимых видов взрывозащиты, обеспечивающих уровень взрывозащиты оборудования Gb

Электрооборудование должно соответствовать установленным требованиям при применении двух независимых видов взрывозащиты, обеспечивающих уровень взрывозащиты оборудования Gb. Если один из видов взрывозащиты выходит из строя, то другой продолжает функционировать. Независимые виды взрывозащиты не должны иметь общих видов повреждений за исключением случаев, приведенных в настоящем пункте.

Пример отказа общего типа: внутри оболочки со взрывозащитой вида "е" расположена оболочка со взрывозащитой вида "d" с искрящими внутри контактами. Если оболочка со взрывозащитой вида "d" повреждается, то искрение внутри оболочки приводит к нарушению взрывозащиты вида "e".

Примечание - Комбинированные виды взрывозащиты, обеспечивающие уровень взрывозащиты оборудования Gb, должны быть основаны на различных физических принципах защиты. Например, совместное применение видов взрывозащиты "d" и "q", оба из которых зависят от предотвращения распространения пламени, может быть не эффективно. На практике не все комбинации эффективны, например комбинация масляного и кварцевого заполнения.

При совместном применении видов взрывозащиты, нужно обеспечить возможность испытания каждого вида взрывозащиты в отдельности (см. 5.1).

Оценку каждого вида взрывозащиты следует проводить при наиболее неблагоприятных условиях применения другого вида взрывозащиты. При совместном применении вида взрывозащиты уровня "ib" с другими видами взрывозащиты, испытание второго вида взрывозащиты следует проводить в наиболее неблагоприятных условиях, предусмотренных для искробезопасной цепи.

При совместном применении видов взрывозащиты, защита которых основана на одних и тех же параметрах (например, пути утечки при совмещении видов "ib" и "e"), следует применять наиболее жесткие требования для этих видов взрывозащиты.

Если оба применяемых вида взрывозащиты основаны на свойствах оболочки, то необходимо соблюдать одно из условий:

- а) при использовании двух оболочек (одна полностью находящаяся внутри другой), каждая из оболочек должна соответствовать требованиям для соответствующего вида взрывозащиты;
- b) если используется только одна оболочка, то данная оболочка, а также кабельные вводы должны соответствовать требованиям к испытаниям на ударостойкость по IEC 60079-0 (пункт 26.4.2) для параметров электрооборудования группы I.

Два независимых вида взрывозащиты могут применяться в следующих устройствах:

- индуктивные передатчики (например, неконтактный переключатель, электрические позиционные датчики) с искробезопасными цепями уровня "ib", герметизированные компаундом "mb". Соединения искробезопасных цепей уровня "ib" могут иметь повышенную защиту вида "e";
- светильнике лампой, имеющий защиту вида "e", и искробезопасной цепью "ib" с выключателем. Эти компоненты могут быть помещены во взрывонепроницаемую оболочку "d";
- измерительные преобразователи с искробезопасной цепью уровня "ib" и взрывонепроницаемой оболочкой "d";
- оборудование с искробезопасносными электрическими цепями уровня "ib", дополнительно защищенными кварцевым заполнением оболочки "q";
- электромагнитные клапаны, герметизированные компаундом "mb", помещенные во взрывонепроницаемую оболочку "d";
- оборудование с защитой вида "е" с заполнением или продувкой под избыточным давлением "рх".

4.2.5 Применение вида взрывозащиты, обеспечивающего уровень взрывозащиты оборудования Gb с разделительным элементом

4.2.5.1 Общие положения

Оборудование, установленное внутри или образующее часть стенки, граничащей с взрывоопасной средой, требующей применения оборудования с уровнем взрывозащиты оборудования Ga с электрическими цепями, не соответствующими требованиям к уровню Ga, должно, по меньшей мере, соответствовать одному из видов взрывозащиты, обеспечивающих уровень взрывозащиты оборудования Gb. Кроме того, такое оборудование должно содержать механический разделительный элемент для защиты электрических цепей оборудования, находящихся во взрывоопасной среде, требующей применения оборудования с уровнем взрывозащиты оборудования Ga.

При нарушении вида взрывозащиты разделительный элемент должен:

а) предотвращать распространение пламени в зону, в которой установлено оборудование с уровнем взрывозащиты оборудования Ga;

- b) сохранять характеристики безопасности;
- с) не нагреваться выше температуры, предусмотренной температурным классом оборудования.

Разделительные элементы, из которых состоит перегородка, могут применяться с взрывонепроницаемым соединением или воздушным зазором с естественной вентиляцией.

4.2.5.2 Разделительные перегородки

Разделительные перегородки должны быть изготовлены из одного из следующих материалов:

- а) нержавеющих материалов, стекла, керамики, указанных в документах производителя;
- b) других материалов, обеспечивающих такой же уровень безопасности (в этом случае на оборудование должна быть нанесена маркировка "Х" или информация в соответствии с IEC 60079-0 [пункт 29.2 i)], и в инструкциях изготовителя должен быть четко указан материал, его механические и температурные характеристики для того, чтобы пользователь мог определить возможность применения материала для конкретной цели).

Если толщина перегородки менее 1 мм, то на оборудование должна быть нанесена маркировка "X" или информация в соответствии с IEC 60079-0 [пункт 29.2 i)] о специальных условиях безопасного использования, т.е. что материал не будет подвергаться внешнему воздействию, которое может негативно сказаться на целостности разделительной перегородки. Если разделительная перегородка постоянно подвергается воздействию вибрации (например, вибрационной мембраны), то в документах должен быть указан предел выносливости при максимальной амплитуде.

Примечание 1 - Толщина перегородки менее 1 мм допускается только при комбинировании искробезопасности "ib" со взрывонепроницаемым соединением, воздушным зазором или естественной вентиляцией (см. 4.2.5.3).

Примечание 2 - Минимальная толщина перегородки из стекла или керамики должна составлять 1/10 диаметра (максимального размера), но не менее 1 мм.

В дополнение к требованиям 4.2.5.1-4.2.5.3 металлические разделительные перегородки толщиной менее 1 мм могут быть снабжены соответствующими проходными изоляторами (см. рисунок 1). Для предотвращения распространения взрывоопасной газовой среды опасной концентрации из зоны, требующей применения оборудования с уровнем взрывозащиты оборудования Ga, в оболочку, внутри которой находятся электрические цепи, степень утечки через изолятор должна быть ниже степени утечки из оболочки в свободную среду, что достигается, например, путем использования стеклянного или керамического изолятора, как приведено на рисунке 1.

Примечание 3 - При использовании стандартной оболочки с характеристикой IP 67 согласно IEC 60529 [11] вполне достаточно изолятора с уровнем утечки, равным уровню утечки гелия, составляющему менее 10^{-2} Па·1/c (10^{-4} мбар 1/c) при перепаде давления 10^{5} Па (1 бар).

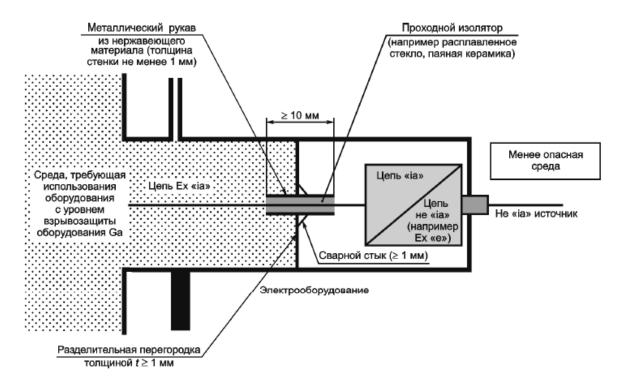
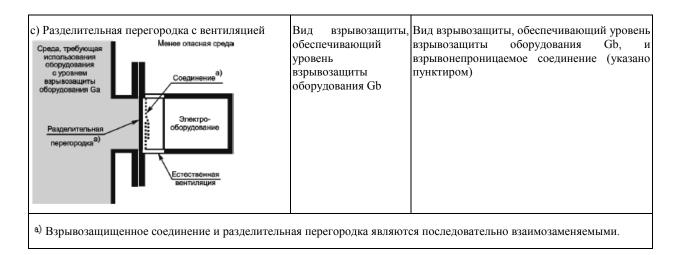


Рисунок 1 - Пример разделительной перегородки с проходным изолятором, препятствующим распространению газа

4.2.5.3 Требования к средствам взрывозащиты, зависящим от толщины разделительной перегородки

Комбинации разделительных элементов и дополнительных средств взрывозащиты зависят от толщины разделительной перегородки t, как приведено ниже и в таблице 1.


- i) При использовании однородной разделительной перегородки толщиной $t \ge 3$ мм дополнительных методов взрывозащиты не требуется.
- іі) При использовании однородной разделительной перегородки толщиной 3 мм $>t\ge 1$ мм следует применять один вид взрывозащиты, обеспечивающий уровень взрывозащиты оборудования Gb (см. перечисление а) таблицы 1). Однородная часть оболочки оборудования с видом взрывозащиты, обеспечивающим уровень взрывозащиты оборудования Gb, может образовывать разделительную перегородку даже для видов взрывозащиты, в которых используется оболочка, при условии отсутствия в оборудовании источника воспламенения, например открытых контактов (см. перечисление а) таблицы 1). Если при нормальных условиях эксплуатации в оборудовании имеется источник воспламенения, то необходимо наличие взрывонепроницаемого соединения (см. перечисление b) таблицы 1) или вентилируемого воздушного зазора (см. перечисление c) таблицы 1).
- ііі) При использовании разделительной перегородки толщиной 1 мм > $t \ge 0,2$ мм необходимо использовать один из следующих видов взрывозащиты:
- вид взрывозащиты искробезопасная электрическая цепь "ib", в соответствии с IEC 60079-11 (см. перечисление а) таблицы 1);
- вид взрывозащиты, обеспечивающий уровень взрывозащиты оборудования Gb, совместно с взрывонепроницаемым соединением (см. перечисление b) таблицы 1);

- вид взрывозащиты, обеспечивающий уровень взрывозащиты оборудования Gb, совместно с вентилируемым воздушным зазором и взрывонепроницаемым соединением (см. перечисление с) таблицы 1).
- iv) При использовании разделительной перегородки толщиной t < 0,2 мм (например, мембраны) необходимо применять взрывонепроницаемое соединение и один из видов взрывозащиты, обеспечивающих уровень взрывозащиты оборудования Gb (см. перечисление b) таблицы 1). Если при нормальных условиях эксплуатации в оборудовании имеется источник воспламенения (например, искрящие контакты), то необходимо дополнительно использовать вентилируемый воздушный зазор (см. перечисление c) таблицы 1).

Примечание - В данном контексте "однородная" означает, что мембрана состоит из единого отрезка материала, без вставок, таких как проходные изоляторы и т.д.

Таблица 1 - Разделительные элементы

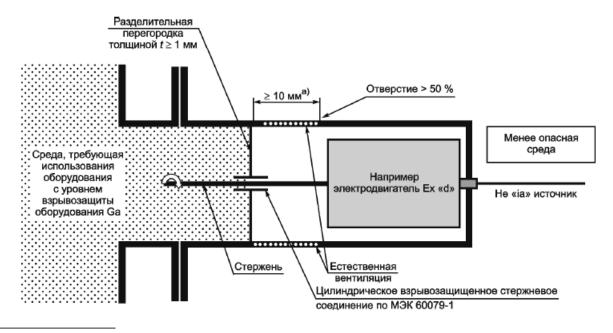
Вид конструкции	Требования к разделительным элементам, в зависимости от толщины разделительной перегородки, t , мм i) При $t \ge 3$ дополнительных средств взрывозащиты не требуется		
	ii) 3 > t ≥ 1	iii) 1 > t ≥ 0,2 (требуется маркировка "X")	iv) <i>t</i> < 0,2 мм (требуется маркировка "X")
а) Разделительная перегородка Среда, требующая использования оборудования с уровнем врывозащиты оборудования Ga Разделительная перегородка Электрооборудование	Вид взрывозащиты, обеспечивающий уровень взрывозащиты оборудования Gb, и отсутствие источника воспламенения (например, открытых контактов) при нормальных условиях эксплуатации	Вид взрывозащиты искробезопасная электрическая цепь "ib"	Не допустима
b) Разделительная перегородка с соединением Среда, требующая использования оборудования с уровнем взрывозащиты оборудования ба Разделительная перегородка в Злектро-оборудование Соединение а)	Вид взрывозащиты, уровень взрывозащиты		Вид взрывозащиты, обеспечивающий уровень взрывозащиты оборудования Gb, и отсутствие источника воспламенения при нормальных условиях эксплуатации (например, отсутствие открытых контактов)

4.2.5.4 Разделительная перегородка с взрывонепроницаемым соединением

Соединения, используемые вместе с разделительной перегородкой, должны соответствовать одному из следующих требований:

а) требованиям ІЕС 60079-1, или

Примечание 1 - При определении характеристик соединения необходимо проверять свободный объем оболочки, имеющей электрические цепи.


b) конструкции с таким же уровнем безопасности, что и в перечислении a).

Примечание 2 - Например, цилиндрический изолятор из политетрафторэтилена соответствующей формы в металлической оболочке длиной, равной или более 40 мм. Если соединение находится под постоянным механическим напряжением (например, при использовании конусообразного изолятора из политетрафторэтилена, сдавленного пружиной), то его длина может быть уменьшена до 17 мм.

Неметаллические компоненты разделительных элементов должны соответствовать требованиям IEC 60695-11-10, категории воспламеняемости V-0 и иметь эквивалент химического удельного сопротивления как у стекла, керамики, нерегенерированного политетрафторэтилена или эпоксидной смолы для маслостойкого исполнения. Материал, из которого изготовлен разделительный элемент, и его предельные механические и температурные характеристики должны быть четко указаны в документах, чтобы пользователь мог определить возможность применения материала для конкретной цели.

4.2.5.5 Разделительная перегородка и воздушный зазор с естественной вентиляцией

оборудовании Вентиляция должна исключать возможность накопления наиболее неблагоприятных легковоспламеняющихся материалов при эксплуатации, указанных изготовителем, и предполагаемых утечках. При атмосферных условиях эксплуатации достаточная вентиляция обеспечивается для всех газов, паров и туманов, если длина воздушного зазора равна или более 10 мм и действительное отверстие на поверхности не менее 50%. В дополнение к требованиям 4.2.5.1-4.2.5.3 металлические разделительные перегородки толщиной, равной или более 1 мм, и снабжены соответствующий воздушный зазор ΜΟΓΥΤ быть цилиндрическим взрывонепроницаемым соединением в соответствии с ІЕС 60079-1 (рисунок 2). Длина воздушного вентиляционного зазора должна составлять не менее 10 мм или должна быть равна диаметру стержня, в зависимости от того, что больше.

а) Необходима для достаточной вентиляции.

Рисунок 2 - Пример разделительного элемента с цилиндрическим взрывонепроницаемым соединением и естественной вентиляцией

Примечание 1 - Цилиндрическое взрывонепроницаемое соединение внутри разделительной перегородки, приведенное на рисунке 2, не является дополнительным соединением согласно 4.2.5.4.

Примечание 2 - Электрооборудование выбирают в зависимости от соответствующей группы газа.

4.3 Оборудование с подвижными частями

4.3.1 Фрикционное нагревание

Если оборудование содержит подвижные части, то повышение его температуры может происходить в результате фрикционного нагрева при нормальных условиях эксплуатации или условиях неисправности. Это следует учитывать при определении наибольшей температуры поверхности оборудования.

4.3.2 Последствия повреждения подвижных частей

Повреждение подвижных частей оборудования не должно влиять на вид взрывозащиты.

4.3.3 Легкие металлы

При эксплуатации не допускается трения или ударов частей оборудования, изготовленных из легких металлов или их сплавов (концентрация которых превышает пределы, указанные в IEC 60079-0), с частями оборудования, изготовленными из железа или стали. Трение или удары между частями оборудования, изготовленными из легких металлов, при эксплуатации допускаются.

Примечание - Легкими металлами являются, например, алюминий, магний, титан или цирконий.

4.4 Изолированные проводящие компоненты

Изолированные электропроводящие части, установленные с наружной части оборудования, должны быть заземлены за исключением случаев, когда они не могут быть заряжены до опасного предела, что должно подтверждаться испытаниями по IEC 60079-0.

4.5 Непроводящие оболочки и доступные непроводящие компоненты

4.5.1 Общие положения

Должны быть приняты меры предосторожности для того, чтобы снизить до допустимого уровня опасность воспламенения от электростатического разряда, особенно если оборудование с уровнем взрывозащиты оборудования Ga может непосредственно применяться в производстве и его непроводящие поверхности могут быть заряжены потоком непроводящей среды (например, в резервуаре или трубах). Поэтому доступные для накопления электростатических зарядов поверхности оборудования должны соответствовать требованиям IEC 60079-0 (пункт 7.3) или одному из следующих требований:

- а) ограничение размера заряжаемой непроводящей поверхности в соответствии с 4.5.2;
 - b) ограничение толщины заряжаемых непроводящих слоев в соответствии с 4.5.3;
 - с) обеспечение проводящего покрытия в соответствии с 4.5.4.

Если ни одно из указанных требований не выполнено, то на оборудование должна быть нанесена маркировка "Х" или информация в соответствии с IEC 60079-0 (пункт 29.2). В сертификате следует указывать специальные условия безопасного применения, чтобы пользователь мог определить возможность применения оборудования для конкретной цели.

4.5.2 Ограничение размера заряжаемой непроводящей поверхности

Проекция заряжаемой непроводящей поверхности не должна превышать значений, указанных в IEC 60079-0 (таблица 4) для зоны 0 (уровень взрывозащиты оборудования Ga). Диаметр и толщина длинных частей непроводящих поверхностей, таких как трубы, стержни, кабели или тросы, не должны превышать следующих значений:

- а) 3 мм для оборудования групп IIA и IIB;
- b) 1 мм для оборудования группы IIC.

4.5.3 Ограничение толщины заряжаемых непроводящих слоев

Если заземленная проводящая поверхность покрыта непроводящим слоем, то его толщина не должна превышать следующих значений:

- а) 2 мм для оборудования групп IIA и IIB;
- b) 0,2 мм для оборудования группы IIC.

Заземленная проводящая поверхность может быть образована проволочной сеткой. Площадь сетки должна соответствовать значениям, указанным в IEC 60079-0 (таблица 4) для зоны 0 (уровень взрывозащиты оборудования Ga).

Примечание 1 - Могут применяться кабели с взрывозащитным покрытием на оболочке.

Примечание 2 - Необходимо учитывать, что при наличии условий интенсивного генерирования заряда могут возникать распространяющиеся кистевые разряды.

4.5.4 Обеспечение проводящего покрытия

Непроводящие поверхности должны иметь прочное заземленное проводящее покрытие. Сопротивление между покрытием и точкой заземления должно быть не более $10^9\,$ Ом.

Сопротивление следует измерять в соответствии с IEC 60079-0 (пункт 26.13) с использованием электрода 1 см^2 при наиболее неблагоприятном положении поверхности и точки заземления.

На оборудование должна быть нанесена маркировка "X" или информация в соответствии с IEC 60079-0 (пункт 29.2), и в сертификате должны содержаться рекомендации по использованию заземленного соединения (если оно доступно для пользователя и не является частью оборудования) и приведены необходимые сведения для того, чтобы пользователь мог определить прочность материала покрытия в соответствии с условиями окружающей среды (см. раздел 7).

Примечание - Требования пункта 4.5 будут отменены после того, как они войдут в новое издание IEC 60079-0.

4.6 Технологические соединения

Если оборудование установлено поперек стенки, находящейся на границе зоны, требующей использования оборудования с уровнем взрывозащиты оборудования Ga, и менее опасной зоны, то конструкцией должно быть обеспечено следующее:

- а) исключение распространения взрывоопасной газовой среды из зоны, требующей использования оборудования с уровнем взрывозащиты оборудования Ga, и опасности воспламенения в прилегающей зоне;
- b) исключение распространения пламени в случае воспламенения взрывоопасной газовой среды в прилегающей зоне в зону, требующую использования оборудования с уровнем взрывозащиты оборудования Ga.

Следовательно, при установке между менее опасной зоной и зоной 0 необходимо обеспечить достаточное плотное соединение (IP67) или взрывонепроницаемое соединение в соответствии с IEC 60079-1.

Примечание 1 - Например, между менее опасной зоной и зоной 0 приемлемо использовать оборудование со встроенным разделительным элементом в соответствии с 4.2.5 или с IP 67 в соответствии с IEC 60529.

Технологические соединения должны соответствовать требованиям международного или соответствующего национального стандарта.

Примечание 2 - Приемлемыми технологическими соединениями являются:

- а) газонепроницаемое стандартизированное промышленное фланцевое соединение;
- b) газонепроницаемая стандартизированная трубопроводная арматура;
- с) газонепроницаемое стандартизированное резьбовое соединение.

Примечание 3 - Если в функциональных целях в стенке, находящейся на границе с зоной 0, необходимо наличие отверстия (например, отверстие для отбора проб, канатный проводник для зонда), то в документах должна содержаться инструкция для пользователя об опасности проникания взрывоопасных газов или распространения пламени.

5 Испытания типа

5.1 Стандартизованные виды взрывозащиты

Оборудование с видами взрывозащиты, обеспечивающими уровень взрывозащиты оборудования Gb, должно выдерживать проверки и испытания типа в соответствии с установленными требованиями стандартов. Если используются два вида взрывозащиты зоны 1, то в соответствии с пунктом 4.2.4 оба вида взрывозащиты следует испытывать отлельно.

5.2 Разделительные элементы

Разделительные элементы в соответствии с 4.2.5 следует испытывать таким образом, чтобы при этом были учтены параметры использования (например, пределы температуры или давления), установленные изготовителем.

5.3 Определение температуры

При определении температуры следует учитывать два независимых повреждения.

Это также относится к разделительным элементам любой толщины, используемым или являющимся частью оборудования с видом взрывозащиты, обеспечивающим уровень взрывозащиты оборудования Gb.

6 Маркировка

6.1 Общие положения

На оборудовании необходимо указывать уровень взрывозащиты оборудования и соответствующий вид взрывозащиты в соответствии с применяемым стандартом.

Оборудование, предназначенное для установки на стенке, между зоной, требующей использования оборудования с уровнем взрывозащиты оборудования Ga, и менее опасной зоной, должно на шильдике иметь маркировку обоих уровней взрывозащиты оборудования, разделенных косой чертой ("/") и соответствующие символы для каждого вида взрывозащиты, разделенные косой чертой ("/"). Если группа оборудования или температурные классы двух видов взрывозащиты не совпадают, то следует использовать полные обозначения технических характеристик, разделенные косой чертой ("/").

Если в соответствии с 4.2.4 используется более одного вида взрывозащиты, то символы обоих видов должны дополнительно маркироваться знаком "+".

6.2 Примеры маркировки

а) Оборудование, предназначенное для установки полностью в зоне, требующей использования оборудования с уровнем взрывозащиты оборудования Ga, маркируют одним из следующих способов:

Ga Ex ia llC T6;

Ga Ex d+e llB T4.

b) Связанное оборудование, которое установлено не в опасной зоне и имеет внешние электрические цепи с защитой искробезопасность "ia" в соответствии с IEC 60079-11 и которое может быть присоединено к оборудованию с уровнем взрывозащиты оборудования Ga, маркируют следующим образом:

(Ga) [Ex ia] IIC.

Примечание 1 - Температурный класс указывать не требуется, т.к. оборудование находится в неопасной зоне.

с) Оборудование, которое установлено на стенке, находящейся на границе зоны, требующей использования оборудования с уровнем взрывозащиты оборудования Ga и менее опасной зоны, должно иметь маркировку обоих уровней взрывозащиты оборудования, разделенных косой чертой ("/"), нанесенную на шильдике одним из следующих способов:

Ga/Gb Ex d llC T6;

Ga/Gb Ex ia/d llC T6;

Примечание 2 - Искробезопасное "ia" оборудование, обеспечивающее уровень взрывозащиты оборудования Ga, с взрывонепроницаемым отделением "d", обеспечивающим уровень взрывозащиты оборудования Gb:

Ga/Gb Ex d+e/d llB T4.

Примечание 3 - Два независимых вида взрывозащиты: взрывонепроницаемая оболочка "d" и повышенная защита вида "e", обеспечивающие уровень взрывозащиты оборудования Ga, с взрывонепроницаемым отделением "d", обеспечивающим уровень взрывозащиты оборудования Gb.

В документах должно быть указано, какая часть оборудования для какой зоны предназначена.

7 Информация по применению

Все оборудование должно сопровождаться инструкциями изготовителя по безопасному применению, содержащими всю необходимую информацию для правильной установки и использования.

Приложение А (справочное)

Альтернативный метод оценки риска с учетом "уровней взрывозащиты оборудования" для Ех оборудования

А.0 Введение

В настоящем приложении приведен альтернативный метод оценки риска уровней взрывозащиты оборудования. Данные уровни взрывозащиты оборудования введены для того, чтобы обеспечить применение альтернативного метода выбора Ех оборудования по сравнению с существующими методами.

А.1 Исторические предпосылки

Исторически было общепризнано, что не все виды защиты гарантируют одинаковый уровень защиты от возможности возникновения воспламенения. Стандарт на электроустановки IEC 60079-14 устанавливает конкретные виды взрывозащиты для конкретных зон на основе статистических данных исходя из того, что чем больше вероятность или частота присутствия взрывоопасной среды, тем более высокий уровень безопасности необходим для предотвращения активизации источника воспламенения.

Разделение на взрывоопасные зоны (за исключением угольных шахт) осуществляют в соответствии со степенью опасности. Степень опасности определяют исходя из вероятности появления взрывоопасной среды. Обычно не учитывают ни потенциальных последствий взрыва, ни других факторов, например токсичности материалов. Истинная оценка риска учитывает все факторы.

Принято, что допуск оборудования для каждой зоны зависит от вида взрывозащиты. В некоторых случаях вид взрывозащиты может быть разделен на несколько уровней взрывозащиты, которые также соотносятся с зонами. Например, вид взрывозащиты "искробезопасная электрическая цепь" разделен на уровни "ia" и "ib". Стандарт по герметизации "m" предусматривает два уровня взрывозащиты - "ma" и "mb".

В прошлом стандарт по выбору оборудования устанавливал тесную связь между видом взрывозащиты оборудования и зоной, в которой данное оборудование можно использовать. Как было отмечено ранее, нигде в системе взрывозащиты IEC не учитываются потенциальные последствия взрыва, если он произойдет.

Однако владельцы предприятий часто принимают интуитивные решения относительно расширения (или ограничения) зон на своем предприятии, чтобы компенсировать этот недостаток. Типичным примером является установка оборудования для навигации для зоны класса 1 в зоне класса 2 на морских нефтяных платформах, чтобы навигационное оборудование продолжало функционировать даже в присутствии неожиданного продолжительного выделения газов. С другой стороны, для владельца удаленной небольшой и безопасной насосной станции приемлемо установить электродвигатель для зоны класса 2 в зоне класса 1, если общее количество газа при взрыве будет небольшим и риск для жизни или собственности от такого взрыва можно не принимать в расчет.

Ситуация стала более сложной с публикацией первого издания IEC 60079-26, который ввел дополнительные требования к оборудованию, предназначенному для

применения в зоне класса 0. До этого вид взрывозащиты "ia" рассматривали как единственный вид взрывозащиты, приемлемый для зоны класса 0.

Было признано, что необходимо идентифицировать и маркировать все изделия в соответствии с риском воспламенения, который они представляют. Это облегчит выбор оборудования и позволит более эффективно применять метод оценки риска.

А.2 Общие требования

Метод оценки риска для Ех оборудования был введен как альтернатива существующему директивному и относительно негибкому методу, связывающему оборудование с зонами. Для облегчения задачи была создана система уровней взрывозащиты оборудования, чтобы ясно показать присущий оборудованию риск воспламенения независимо от используемого вида взрывозащиты.

Система уровней взрывозащиты оборудования следующая.

А.2.1 Угольная промышленность (группа I)

А.2.1.1 Уровень взрывозащиты оборудования Ма

Оборудование для установки в угольной шахте, имеющее "очень высокий" уровень защиты, обеспечивающий достаточную безопасность и характеризующийся малой вероятностью стать источником воспламенения, даже если оно будет находиться под напряжением при внезапном выделении газа.

Примечание - Обычно линии связи и газоанализаторы конструируют в соответствии с требованиями к уровню взрывозащиты оборудования Ма (например, телефонная линия с видом взрывозащиты "ia").

А.2.1.2 Уровень взрывозащиты оборудования Мь

Оборудование для установки в угольной шахте, имеющее "высокий" уровень защиты, обеспечивающий достаточную безопасность и характеризующийся малой вероятностью стать источником воспламенения в течение времени от момента возникновения взрывоопасной атмосферы до момента отключения его питания электрической энергией.

Примечание - Обычно все угледобывающее оборудование конструируют в соответствии с требованиями к уровню защиты Мb (например, электродвигатели и распределительные устройства с видом взрывозащиты "d", т.е. Ex d).

А.2.2 Газы (группа II)

А.2.2.1 Уровень взрывозащиты оборудования Ga

Оборудование для взрывоопасных газовых сред, обеспечивающее "очень высокий" уровень защиты, не являющееся источником воспламенения в нормальных условиях или при появлении редких неисправностей.

А.2.2.2 Уровень взрывозащиты оборудования Gb

Оборудование для взрывоопасных газовых сред, обеспечивающее "высокий" уровень защиты, не являющееся источником воспламенения в нормальных условиях или при появлении предполагаемых неисправностей, которые возникают нерегулярно.

Примечание - Большинство стандартных видов взрывозащиты обеспечивает этот уровень взрывозащиты оборудования.

А.2.2.3 Уровень взрывозащиты оборудования Gc

Оборудование для взрывоопасных газовых сред, обеспечивающее "повышенный" уровень защиты, не являющееся источником воспламенения в нормальных условиях, и которое может иметь дополнительную защиту, обеспечивающую ему свойства неактивного источника воспламенения в случае появления предполагаемых регулярных неисправностей (например, выход из строя лампы).

Примечание - Обычно это оборудование с видом взрывозащиты "п".

А.2.3 Пыль (группа III)

А.2.3.1 Уровень взрывозащиты оборудования Da

Оборудование, предназначенное для применения в среде горючей пыли, обеспечивающее "очень высокий" уровень защиты, не являющееся источником воспламенения в нормальных условиях эксплуатации или при появлении предполагаемых или редких неисправностей.

А.2.3.2 Уровень взрывозащиты оборудования Db

Оборудование, предназначенное для применения в среде горючей пыли, обеспечивающее "очень высокий" уровень защиты, не являющееся источником воспламенения в нормальных условиях эксплуатации или при появлении предполагаемых неисправностей, которые возникают нерегулярно.

А.2.3.3 Уровень взрывозащиты оборудования Dc

Оборудование, предназначенное ДЛЯ применения среде горючей В обеспечивающее "повышенный" уровень защиты, не являющееся источником воспламенения в нормальных условиях эксплуатации, и которое может иметь дополнительную защиту, обеспечивающую ему свойства неактивного источника воспламенения в случае появления предполагаемых регулярных неисправностей (например, выход из строя лампы).

В большинстве ситуаций с типичными потенциальными последствиями взрыва руководствуются следующими правилами применения оборудования в зонах (это не относится к угольным шахтам, для которых принцип зон обычно не применяют).

Таблица А.1 - Традиционная взаимосвязь уровней взрывозащиты оборудования и зон (без дополнительной оценки риска)

Уровень взрывозащиты оборудования	Класс зоны
Ga	0
Gb	1
Gc	2
Da	20
Db	21
Dc	22

А.3 Обеспечиваемая защита от риска воспламенения

Разные уровни взрывозащиты оборудования должны проявляться в соответствии с рабочими параметрами, установленными изготовителем для данного уровня взрывозащиты.

Таблица А.2 - Обеспечиваемая защита от риска воспламенения

Степень обеспечиваемой защиты	Уровень взрывозащиты <u>оборудования</u> Группа	Характеристика защиты	Условия работы
Очень высокая	<u>Ма</u> Группа I	Два независимых средства защиты или безопасность при двух независимо возникающих неисправностях	Оборудование работает в присутствии взрывоопасной среды
Очень высокая	<u>Ga</u> Группа II	Два независимых средства защиты или безопасность при двух независимо возникающих неисправностях	Оборудование работает в зонах 0, 1 и 2
Очень высокая	<u>Da</u> Группа III	Два независимых средства защиты или безопасность при двух независимо возникающих неисправностях	Оборудование работает в зонах 20, 21 и 22
Высокая	<u>Мb</u> Группа I	Подходит для нормальных и тяжелых условий эксплуатации	Оборудование отключают от напряжения в присутствии взрывоопасной среды
Высокая	<u>Gb</u> Группа II	Подходит для нормальных условий эксплуатации и условий часто возникающих неисправностей или для оборудования, неисправности которого обычно учитывают	Оборудование работает в зонах 1 и 2
Высокая	<u>Db</u> Группа III	Подходит для нормальных условий эксплуатации и условий часто возникающих неисправностей или для оборудования, неисправности которого обычно учитывают	Оборудование работает в зонах 21 и 22
Повышенная	<u>Gc</u> Группа II	Подходит для нормальных условий эксплуатации	Оборудование работает в зоне 2
Повышенная	<u>Dc</u> Группа III	Подходит для нормальных условий эксплуатации	Оборудование работает в зоне 22

А.4 Реализация

В четвертом издании IEC 60079-14 [6] (включая требования IEC 61241-14 [16]) будут введены уровни взрывозащиты оборудования, позволяющие применять систему "оценки риска" в качестве альтернативного метода выбора оборудования (см. таблицу А.2). Соответствующая ссылка будет также включена в стандарты по классификации взрыоопасных зон IEC 60079-10 и IEC 61241-10 [14].

Дополнительная маркировка и взаимосвязь существующих видов взрывозащиты будут введены в исправленные издания следующих стандартов МЭК:

```
    IEC 60079-0 (включая требования IEC 61241-0);
```

```
- IEC 60079-1;
```

```
    - IEC 60079-2 [2] (включая требования IEC 61241-4 [13]);
```

```
- IEC 60079-5 [3];
```

```
- IEC 60079-6 [4];
```

- IEC 60079-7 [5];
- IEC 60079-11 (включая требования IEC 61241-11 [15]);
- IEC 60079-15 [7];
- IEC 60079-18 [8] (включая требования IEC 61241-18 [17]);
- IEC 60079-26 [9];
- IEC 60079-28 [10].

Для видов взрывозащиты для взрывоопасных газовых сред необходима дополнительная маркировка уровней взрывозащиты оборудования. Для среды взрывчатой пыли существующая система маркировки зон на оборудовании будет заменена маркировкой уровней взрывозащиты оборудования.

Библиография

[1]	IEC 60050-426:1990	International electrotechnical vocabulary - Chapter 426: Electrical apparatus for explosive atmospheres (Международный электротехнический словарь (МЭС). Глава 426. Электрооборудование для взрывоопасных сред)
[2]	IEC 60079-2	Electrical apparatus for explosive gas atmospheres - Part 2: Pressurized enclosures "p" (Электрооборудование для взрывоопасных газовых сред. Часть 2. Оболочки под избыточным давлением "p")
[3]	IEC 60079-5	Electrical apparatus for explosive gas atmospheres - Part 5: Powder filling "q" (Электрооборудование для взрывоопасных газовых сред. Часть 5. Кварцевое заполнение оболочки "q")
[4]	IEC 60079-6	Electrical apparatus for explosive gas atmospheres - Part 6: Oil-immersion "o" (Электрооборудование для взрывоопасных газовых сред. Часть 6. Масляное заполнение

		оболочки "о")
[5]	IEC 60079-7	Explosive atmospheres - Part 7: Equipment protection by increased safety "e" (Взрывоопасные среды. Часть 7. Повышенная защита вида "e")
[6]	IEC 60079-14	Electrical apparatus for explosive gas atmospheres - Part 14: Electrical installations in hazardous areas (other than mines) (Электрооборудование для взрывоопасных газовых сред. Часть 14. Электроустановки во взрывоопасных зонах (кроме подземных выработок)
[7]	IEC 60079-15	Electrical apparatus for explosive gas atmospheres - Part 15: Construction, test and marking of type of protection "n" electrical apparatus (Электрооборудование для взрывоопасных газовых сред. Часть 15. Конструкция, испытание и маркировка не искрящего электрооборудования с видом защиты "n")
[8]	IEC 60079-18	Explosive atmospheres - Part 18: Equipment protection by encapsulation "m" (Взрывоопасные среды. Часть 18. Электрооборудование. Требования к герметизации компаундом "m")
[9]	IEC 60079-26:2004	Electrical apparatus for explosive gas atmospheres - Part 26: Construction, test and marking of Group II Zone 0 electrical apparatus (Электрооборудование для взрывоопасных газовых сред. Часть 26. Конструкция, испытание и маркировка электрооборудования группы II для зоны класса 0)
[10]	IEC 60079-28	Explosive atmospheres - Part 28: Protection of equipment and transmission systems using optical radiation (Взрывоопасные среды. Часть 28. Защита оборудования и передающих систем, использующих оптическое излучение)
[11]	IEC 60529	Degrees of protection provided by enclosures (IP code) (Степени защиты, обеспечиваемые оболочками (Код IP)
[12]	IEC 61241-0	Electrical apparatus for use in the presence of combustible dust - Part 0: General requirements (Электрооборудование для применения в присутствии горючей пыли. Часть 0. Общие требования)
[13]	IEC 61241-4	Electrical apparatus for use in the presence of combustible dust - Part 4: Type of protection "pD" (Электрооборудование для применения в присутствии горючей пыли. Часть 4. Защита вида "pD")
[14]	IEC 61241-10	Electrical apparatus for use in the presence of combustible dust - Part 10: Classification of areas where combustible dusts are or may be present (Электрооборудование, применяемое в зонах, опасных по воспламенению горючей пыли. Часть 10. Классификация зон, где присутствует или может присутствовать горючая пыль)
[15]	IEC 61241-11	Electrical apparatus for use in the presence of combustible dust - Part 11: Protection by intrinsic safety "iD" (Электрооборудование, применяемое в зонах, опасных по воспламенению горючей пыли. Часть 11. Защита вида искробезопасная цепь в присутствии пыли "iD")
[16]	IEC 61241-14	Electrical apparatus for use in the presence of combustible dust - Part 14: Selection and installation (Электрооборудование, применяемое в зонах, опасных по воспламенению горючей пыли. Часть 14. Выбор и установка)
[17]	IEC 61241-18	Electrical apparatus for use in the presence of combustible dust - Part 18: Protection by encapsulation "mD" (Электрооборудование, применяемое в зонах, опасных по воспламенению горючей пыли. Часть 18. Защита герметизацией компаундом "mD")
[18]	EN 1127-1	Explosive atmospheres - Explosion prevention and protection - Part 1. Basic concepts and methodology (Предотвращение и защита от взрыва. Часть 1. Основные концепции и методология)

Приложение ДА (справочное)

Сведения о соответствии межгосударственных стандартов ссылочным международным стандартам

Таблица ДА.1

Обозначение и наименование ссылочного международного стандарта	Степень соответствия	Обозначение и наименование соответствующего межгосударственного стандарта
IEC 60079-0:2004 Электрооборудование для взрывоопасных газовых сред - Часть 0: Общие требования	MOD	ГОСТ 31610.0-2012/IEC 60079-0:2004 Электрооборудование для взрывоопасных газовых сред. Часть 0. Общие требования
IEC 60079-1:2007 Электрооборудование для взрывоопасных газовых сред - Часть 1: Взрывонепроницаемые оболочки "d"	IDT	ГОСТ IEC 60079-1-2011 Взрывоопасные среды. Часть 1. Оборудование с видом взрывозащиты "взрывонепроницаемые оболочки "d"
IEC 60079-10:2002 Электрооборудование для взрывоопасных газовых сред - Часть 10: Классификация опасных сред	IDT	ГОСТ 31610.10-2012/IEC 60079-10:2002 Электрооборудование для взрывоопасных газовых сред. Часть 10. Классификация взрывоопасных зон
IEC 60079-11:2006 Электрооборудование для взрывоопасных газовых сред - Часть 11: Искробезопасная электрическая цепь "i"	-	*
IEC 60079-14:2002 Электрооборудование для взрывоопасных газовых сред - Часть 14: Электроустановки в опасных зонах (кроме шахт)	IDT	ГОСТ IEC 60079-14-2011 Взрывоопасные среды. Часть 14. Проектирование, выбор и монтаж электроустановок
IEC 60079-18:2004 Электрооборудование для взрывоопасных газовых сред - Часть 18: Конструкция, испытания и маркировка электрооборудования с защитой вида "герметизация компаундом "m"	IDT	ГОСТ IEC 60079-18-2011 ¹⁾ Взрывоопасные среды. Часть 18. Оборудование с взрывозащитой вида "герметизация компаундом "m"
IEC 60695-11-10 Испытания на пожароопасность. Часть 11-10. Пламя для испытания. Методы испытания горизонтальным и вертикальным пламенем мощностью 50 Вт	-	*

^{*} Соответствующий межгосударственный стандарт отсутствует. До его утверждения рекомендуется использовать перевод на русский язык данного международного стандарта. Перевод данного международного стандарта находится в Федеральном информационном фонде технических регламентов и стандартов.

Примечание - В настоящей таблице использованы следующие условные обозначения соответствия стандартов:

- IDT идентичные стандарты;
- MOD модифицированные стандарты.

 $^{^{1)}}$ В Российской Федерации действует ГОСТ Р МЭК 60079-18-2012 "Взрывоопасные среды. Часть 18. Оборудование с видом взрывозащиты "герметизация компаундом "m", здесь и далее по тексту. - Примечание изготовителя базы данных.